Office - 106, Chalaremprakiat, Lor 9, Soi 22, Yak 5, Nongbon, Prawet, Bangkok, Thailand 10250

Factory - 188/3, Moo 8, Tambon Bangpu Mai, Amphoe Muang Samut Prakan, Samutprakan, Thailand 10280

Mobile - Thai: 0804531391, English: 0839415475, E-mail - contact@polymeradd.co.th

MICRONISED ZINC PHENYLPHOSPHONATE IN MODERN POLYMER SYSTEMS

Micronised **Zinc Phenylphosphonate** (**ZnPP**) is a high-performance functional additive primarily used as a nucleating and crystallisation-control agent in semi-crystalline polymers.

Its high thermal stability (~400 °C), low impurity profile, and controlled micron-scale particle size make it particularly valuable in applications where heat resistance, dimensional stability, and processing efficiency are critical.

1. BIOPLASTICS (PLA, PHA AND RELATED BLENDS)

The most significant and fastest-growing application of micronised Zinc Phenylphosphonate is in biodegradable polymers, especially PLA (Polylactic Acid) and PHA-based systems. These polymers inherently suffer from slow crystallisation rates, low heat-deflection temperatures (HDT), and inconsistent mechanical performance during industrial processing.

ZnPP acts as an efficient heterogeneous nucleating agent, dramatically accelerating crystallisation. This results in:

- Higher and more uniform crystallinity
- Improved heat resistance and dimensional stability
- Shorter cooling and cycle times during processing

For injection-moulded and thermoformed PLA articles, this translates into higher productivity, better part consistency, and expanded end-use temperature windows, making ZnPP a key enabler for replacing conventional plastics with bio-based alternatives.

2. INJECTION MOULDING COMPOUNDS & MASTERBATCHES

Micronised Zinc Phenylphosphonate is widely used in polymer masterbatches, particularly PLA nucleating masterbatches, which are later let down into finished compounds. Its fine particle size (D50 typically 4–8 µm) ensures excellent dispersion, even at low addition levels.

In injection-moulding applications, ZnPP delivers:

- Faster mould-cycle times due to rapid crystallisation
- Improved stiffness and rigidity of moulded parts
- Reduced warpage and post-shrinkage

These benefits are especially important for thin-wall parts, technical components, and precision mouldings, where dimensional control and repeatability directly affect yield and scrap rates. As a result, ZnPP is increasingly adopted by compounders supplying high-performance moulding grades.

Office - 106, Chalaremprakiat, Lor 9, Soi 22, Yak 5, Nongbon, Prawet, Bangkok, Thailand 10250

Factory - 188/3, Moo 8, Tambon Bangpu Mai, Amphoe Muang Samut Prakan, Samutprakan, Thailand 10280

Mobile - Thai: 0804531391, English: 0839415475, E-mail - contact@polymeradd.co.th

3. Thermoforming & Rigid Packaging Applications

Rigid packaging made from PLA and related polymers often faces limitations in heat resistance and structural stability, particularly during downstream thermoforming. Micronised Zinc Phenylphosphonate addresses these issues by promoting controlled crystallisation during sheet extrusion and subsequent forming.

Key advantages in packaging applications include:

- Improved HDT for hot-fill and warm-use containers
- · Better stiffness-to-weight ratio
- Enhanced shape retention during forming and cooling

This makes ZnPP especially suitable for food containers, trays, lids, and disposable rigid packaging, where appearance, strength, and process stability must be balanced against sustainability targets.

TYPICAL SPECIFICATIONS FOR MICRONISED ZINC PHENYLPHOSPHONATE

For ZnPP to function effectively as a **nucleating and crystallisation-control additive**, several material parameters are critical. Particle size, purity, and thermal stability directly influence dispersion, nucleation efficiency, and final polymer performance.

1. Critical Physical & Chemical Specifications

Parameter	Typical Specification	Importance in Application
Appearance	White, free-flowing	Ensures clean dispersion without visual
	micronised powder	defects.
Assay	≥ 98.0 %	High purity ensures consistent nucleation
		efficiency
Decomposition	~400 °C	Stable under PLA, PHA, and polyolefin
Temperature		processing
pH (1% dispersion)	6.5 - 7.2	Neutral behaviour; no polymer degradation
Moisture Content	≤ 0.5 %	Prevents hydrolytic degradation of PLA
Heavy Metals	≤ EU 10/2011 limits	Suitable for regulated packaging applications
(Pb, Cd, Hg, As)		

2. Particle Size Requirements (Critical Parameter)

Particle Size Metric	Typical Value	Application Relevance
D50 (median size)	4 – 8 µm	Optimal nucleation density
D90	≤ 20 µm	Prevents stress points and surface defects
Agglomerates	Minimal / controlled	Ensures uniform crystallisation
Particle Morphology	Fine, non-fibrous	Promotes easy dispersion in melt

Office - 106, Chalaremprakiat, Lor 9, Soi 22, Yak 5, Nongbon, Prawet, Bangkok, Thailand 10250

Factory - 188/3, Moo 8, Tambon Bangpu Mai, Amphoe Muang Samut Prakan, Samutprakan, Thailand 10280

Mobile - Thai: 0804531391, English: 0839415475, E-mail - contact@polymeradd.co.th

Why this matters:

Particles above ~20–25 μ m can act as defects rather than nucleation sites, while ultra-fine (<2 μ m) grades may agglomerate and reduce effectiveness. The **4–8 \mum D50 window** is considered optimal for PLA and PHA systems.

Typical Loading Levels by Polymer System

ZnPP is highly efficient and is normally used at low addition levels, depending on polymer type, processing method, and cooling profile.

3. Recommended Dosage Guidelines

Polymer System	Typical Loading Level*	Primary Objective
PLA (Injection Moulding)	0.7 – 1.2 phr	Faster crystallisation, reduced cycle time
PLA (Thermoforming Sheet)	0.8 – 1.5 phr	Higher HDT, improved shape retention
PLA Masterbatch	5 – 10 % in MB	Down-stream let-down flexibility
PHA / PHA Blends	0.5 – 1.0 phr	Crystallinity control, stiffness
PLA/Polyester Blends	0.5 – 1.0 phr	Improved phase stability
Rigid Bioplastic Packaging	0.8 – 1.3 phr	Thermal stability and rigidity

^{*}phr = parts by weight per 100 parts of polymer resin

4. Processing Considerations

- Best dispersion achieved via pre-compounded masterbatch or high-shear twin-screw compounding
- ZnPP is thermally stable and does not degrade at typical PLA processing temperatures (170–220 °C)
- Cooling rate strongly affects final crystallinity; ZnPP enables faster cooling without loss of properties

Summary

For high-performance bioplastics and rigid packaging applications, micronised Zinc Phenylphosphonate must combine controlled particle size (D50 4–8 µm), high purity, and low moisture to deliver reliable nucleation efficiency.

At typical loadings of 0.7–1.5 phr, ZnPP enables faster processing, higher HDT, and improved dimensional stability—making it a key additive in modern PLA and PHA formulations.

Office - 106, Chalaremprakiat, Lor 9, Soi 22, Yak 5, Nongbon, Prawet, Bangkok, Thailand 10250

Factory - 188/3, Moo 8, Tambon Bangpu Mai, Amphoe Muang Samut Prakan, Samutprakan, Thailand 10280

Mobile - Thai: 0804531391, English: 0839415475, E-mail - contact@polymeradd.co.th

PLA NUCLEATION & FILLER COMPARISON

Talc vs Micronised Zinc Phenylphosphonate (ZnPP)

Context: PLA is inherently slow-crystallising. Nucleating agents or fillers are added to improve crystallinity, HDT, and processing efficiency. Talc and ZnPP achieve this via fundamentally different mechanisms.

1. Functional Role Comparison

Parameter	Talc	Micronised ZnPP
Primary Function	Mineral filler with secondary	Dedicated heterogeneous
	nucleation	nucleating agent
Mechanism	Surface-induced crystallisation	Highly selective crystallisation
	(non-selective)	control
Typical Use Philosophy	Cost reduction + stiffness	Performance enhancement

2. Particle Size & Morphology

Parameter	Talc	Micronised ZnPP
Typical D50	5 – 12 μm (platelet)	4 – 8 μm (non-platelet)
D90	Often >30 µm	≤ 20 μm
Particle Shape	Plate-like (anisotropic)	Fine, isotropic
Dispersion Quality	Moderate	Excellent
Risk of Stress Concentration	High at higher loadings	Very low

Key Insight:

Talc platelets can create internal stress planes in thin-wall PLA parts, whereas ZnPP particles act as discrete nucleation points without mechanical disruption.

3. Crystallisation & Thermal Performance in PLA

Talc	Micronised ZnPP
Moderate	High
Poor–moderate	Precise & uniform
Limited improvement	Significant improvement
Limited	Strong
High	Low
	Moderate Poor–moderate Limited improvement Limited

Practical Result:

ZnPP allows **shorter mould cycles** even at higher cooling rates, while talc often requires slower cooling to avoid warpage.

4. Mechanical Properties Impact

Property	Talc	Micronised ZnPP
Stiffness	Increases	Moderate increase
Tensile Strength	Often decreases	Maintained or improved

Office - 106, Chalaremprakiat, Lor 9, Soi 22, Yak 5, Nongbon, Prawet, Bangkok, Thailand 10250

Factory - 188/3, Moo 8, Tambon Bangpu Mai, Amphoe Muang Samut Prakan, Samutprakan, Thailand 10280

Mobile - Thai: 0804531391, English: 0839415475, E-mail - contact@polymeradd.co.th

Impact Strength	Decreases	Largely preserved
Warpage	Increased risk	Reduced

5. Optical & Surface Effects

Aspect	Talc	Micronised ZnPP
Transparency	Strongly reduced	Controlled / minimal impact
Surface Finish	Matte	Smooth
Colour Impact	Greyish / off-white	Neutral white
Suitability for Clear PLA	Poor	Good

6. Typical Loading Levels

Parameter	Talc	Micronised ZnPP
Typical Loading	5 – 20 wt%	0.7 – 1.5 phr
Effect at Low Dosage	Limited	Very high
Impact on Density	Increases density	Minimal impact

7. Processing & Equipment Impact

Factor	Talc	Micronised ZnPP
Screw / Tool Wear	High (abrasive)	Very low
Melt Rheology Impact	Significant	Minimal
Feeding Consistency	Good	Excellent
Masterbatch Compatibility	Moderate	Excellent

8. Regulatory & Application Positioning

Aspect	Talc	Micronised ZnPP
Food-Contact Concerns	Source-dependent	Cleaner impurity profile
Medical / Biopolymer Use	Limited	Widely accepted
Sustainability Impact	Mineral filler	Performance additive (low dosage)

Summary Table - When to Use What

Application Goal	Recommended Additive	
Cost reduction, non-critical parts	Talc	
Faster cycle time	ZnPP	
Higher HDT	ZnPP	
Thin-wall injection moulding	ZnPP	
Thermoformed PLA packaging	ZnPP	
Transparent or light-coloured PLA	ZnPP	
Heavy-filled, opaque parts	Talc	

Office - 106, Chalaremprakiat, Lor 9, Soi 22, Yak 5, Nongbon, Prawet, Bangkok, Thailand 10250

Factory - 188/3, Moo 8, Tambon Bangpu Mai, Amphoe Muang Samut Prakan, Samutprakan, Thailand 10280

Mobile - Thai: 0804531391, English: 0839415475, E-mail - contact@polymeradd.co.th

Conclusion

Micronised Zinc Phenylphosphonate has established itself as a **critical performance additive** in next-generation polymer systems. Its primary value lies in enabling faster processing, higher crystallinity, and improved thermal performance—particularly in **bioplastics**, **injection-moulded compounds**, and thermoformed packaging.

Date of creation: Dec 2025

Date of review: Dec 2027

